WNE Linear Algebra Final Exam
 Series B

9 February 2017

Please use separate sheets for different problems. Please provide the following data on each sheet
 - name, surname and your student number,
 - number of your group,
 - number of the corresponding problem.

Problem 1.

Let $v_{1}=(1,1,1,2), v_{2}=(1,2,3,3), v_{3}=(2,0, t, 2)$ be vectors in \mathbb{R}^{4}.
a) for which $t \in \mathbb{R}$ vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{4}$ are linearly independent?
b) find a system of linear equations which set of solutions is equal to $\operatorname{lin}\left(v_{1}, v_{2}, v_{3}\right)$ for $t=0$.

Problem 2.

Let $W \subset \mathbb{R}^{5}$ be a subspace given by the homogeneous system of linear equations
a) find a basis \mathcal{A} of the subspace W and the dimension of W,
b) complete the basis \mathcal{A} to a basis \mathcal{B} of \mathbb{R}^{5} and find coordinates of $w=(1,2,0,0,0) \in$ \mathbb{R}^{5} relative to \mathcal{B}.

Problem 3.

Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(t x_{1}, x_{1}+5 x_{2}-6 x_{3}, x_{1}+3 x_{2}-4 x_{3}\right) .
$$

a) for $t=2$ find matrix $C \in M(3 \times 3 ; \mathbb{R})$ such that matrix $C^{-1} M(\varphi)_{s t}^{s t} C$ is diagonal, b) find all $t \in \mathbb{R}$ for which there exist a basis \mathcal{A} of \mathbb{R}^{3} such that $M(\varphi)_{\mathcal{A}}^{\mathcal{A}}=$ $\left[\begin{array}{lll}p & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q\end{array}\right]$, where $p, q \in \mathbb{R}$.

Problem 4.

Let $\mathcal{A}=((2,0,1),(0,1,0),(1,0,1))$ be an ordered basis of \mathbb{R}^{3}. The linear transformation $\psi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ is given by the matrix $M(\psi)_{\mathcal{A}}^{\mathcal{A}}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.
a) find $M(\psi)_{\mathcal{A}}^{s t}$,
b) find formula of $\psi \circ \psi$.

Problem 5.

Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid 2 x_{1}+x_{2}-x_{3}=0\right\}$ be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V^{\perp},
b) compute the orthogonal projection of $w=(0,0,6)$ onto V.

Problem 6.

Let

$$
A^{-1}=\left[\begin{array}{lll}
1 & 3 & 1 \\
1 & 4 & 1 \\
2 & 7 & 3
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

a) compute matrix $B A$,
b) compute $\operatorname{det}\left(A^{-1} B^{3}+B^{4}\right)$.

Problem 7.

Let $L \subset \mathbb{R}^{3}$ be an affine line given by the system of linear equations

$$
\left\{\begin{array}{c}
x_{1}-x_{3}=1 \\
x_{2}-2 x_{3}=-1
\end{array}\right.
$$

a) find a parametrization of L,
b) find an equation of the affine plane perpendicular to L passing through $(0,1,1)$.

Problem 8.

Consider the following linear programming problem $7 x_{2}-5 x_{3}-2 x_{5} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{array}{rlrl}
x_{1} & -x_{2} & +x_{3}+x_{4} & \\
3 x_{1} & -2 x_{2} & +2 x_{3}
\end{array}+x_{5}=5 \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{2,3\}, \mathcal{B}_{2}=\{2,4\}, \mathcal{B}_{3}=\{4,5\}$ are basic? Which basic sets are feasible?
b) solve the linear programming problem using simplex method.

